

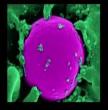
Complexity, Climate and Evaluation

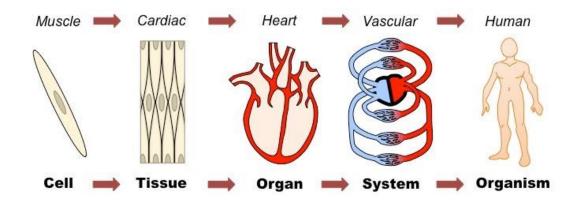
Dr. Jo (Jyotsna) Puri Head, Independent Evaluation Unit Green Climate Fund

What do we see?

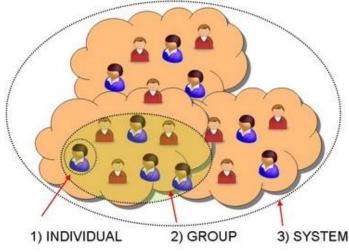
How does this work?

- Ants work together despite not having a leader telling them what to do
 - **decentralized signaling** and selforganization.
- Ants change their behavior based on what they see others doing
 - adaptive interaction
- The whole (fire ant bridge) is greater than the sum of its parts (individual ants)
 - Emergence!




Emergence: The fundamental characteristic of Complex Systems

Emergent properties are those that arise through interactions among smaller parts that alone do not exhibit such


properties

NESTED SYSTEMS WITHIN SOCIAL SYSTEMS

Complex vs. Complicated

- Multiple moving parts
- Parts work together in a network to produce an outcome
- System adapts to its environment
- Agents communicate in a decentralized way
- Potential for unpredictable behaviour

Complexity and climate change?

•Climate patterns are complex!

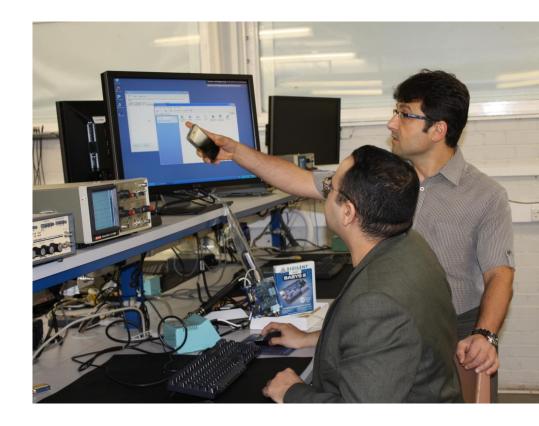
•Climate change **project is a complex system**

- Multiple stakeholders
- Potential for secondary effects
- •Shifting baselines with changing climate
- Feedbacks to reinforce trends
- •**Tipping points** ecological collapse?

Two main questions

Can we measure the complexity in climate change projects?

What does complexity mean for evaluating climate change programs?


What we did

- Qualitative analysis of 10 random project proposals
 - Evaluability, complexity, proposed evaluation design
- Rubric to rate levels of complexity
 - Based on proxy indicators
- Literature review of complexity and evaluation
 - Suggests methods for evaluation and identifies gaps

What we found: Qualitative Proposal Analysis

- Theories of Change weak.
- More interventions, more potential for confounding amongst them and unexpected outcomes.
- Mitigation-only projects not as complex as adaptation or both
- Potential for evaluation if proper steps.
- **Measure institutional and policy** interventions?

THE COMPLEXITY RUBRIC

Proxy	RATIONALE FOR INCLUSION IN THE COMPLEXITY RUBRIC
Number of Interventions	A larger number of interventions on the same population indicates a higher potential for interactions between the interventions to lead to emergent properties and feedback loops.
Theory of Change Quality	A weak theory of change indicates a higher amount of uncertainty as to whether projects will lead to their intended outcomes and challenges the ability of evaluators to understand its effectiveness.
Number of Stakeholder Groups	A larger number of stakeholder groups indicates a greater diversity of actions and interactions between agents.
Number of Sectors	When a project involves multiple sectors, it requires more interdisciplinary collaboration, which may involve the management of multiple stakeholders with competing priorities.
Target Outcome (Mitigation, Adaptation or Cross-Cutting)	Adaptation and Mitigation/Adaptation interventions tend to be more complex than projects that target only Mitigation because they often have more interventions in different sectors, longer timescales to understand effects and more uncertainty as to how climate change will affect the beneficiaries.

What we found: Complexity Rating

- Project complexity: 3 high, 6 medium, 1 low
- More interventions = more complexity
- Limited by proxies
- Limited to what is written in project proposal.

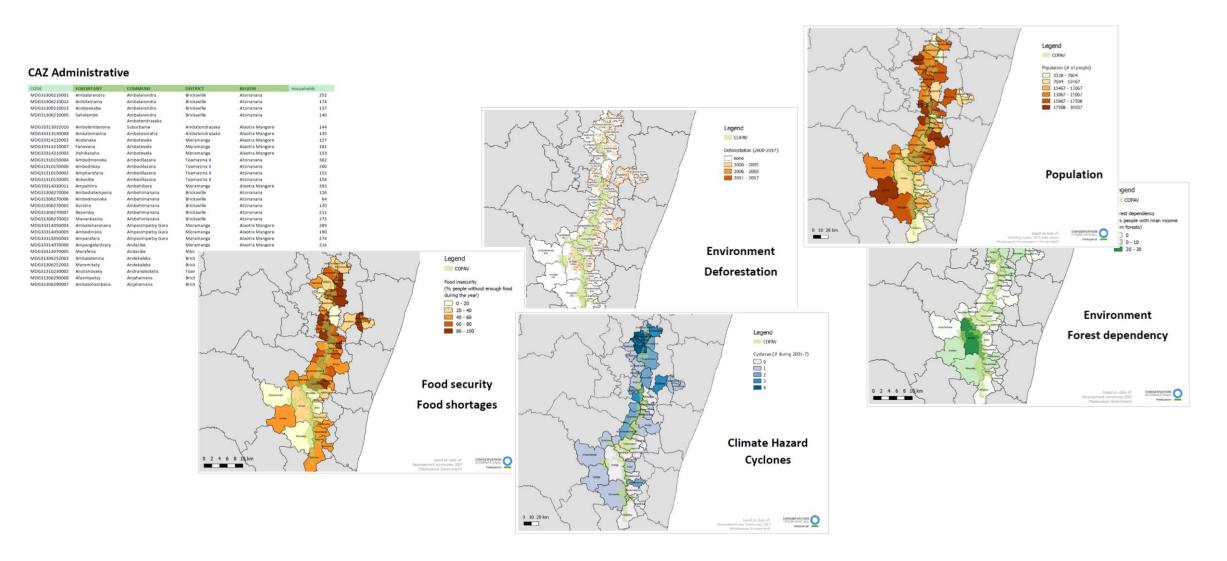
Project Name Shortcut	Type of project	Complexity rating	Challenges to evaluability	Suggested evaluation methods
1: Building the Resilience of Wetlands in Peru	Mitigation and Adaptation	Medium	Limited baseline information; residents in rural indigenous communities do not have registered IDs	Randomized impact evaluation; participatory community research; spatial analysis for forest cover outcomes
4: Climate- Resilient Infrastructure Mainstreaming in Bangladesh	Adaptation	Medium	Unclear baselines for previous disaster losses and co-benefits in education; Challenging to measure loss in disaster scenarios; Spatial and temporal confounds in shelter use	Randomized phase-in of shelter construction; time series of welfare and asset trends as connected to cyclone frequency
11: Ecosystem- based Adaptation in the Gambia	Adaptation	Medium	Confounding factors related to ecological changes from climate change itself	Randomized evaluation of bio-business programs; spatial analysis of ecosystems; in situ measurements of ecosystem health; time series for institutional and policy changes
13: Improving resilience in coastal Viet Nam	Mitigation and Adaptation	Medium	Timescale of resilience to coastal events spans beyond that of the project	Randomized evaluation of climate-resilient house design and CBDRM; spatial analysis for mangrove rehabilitation; time series for climate risk mainstreaming
17: Solar Energy Development in Chile	Mitigation	Low	Hard to randomize a single large- scale solar project; cannot assume that additional solar energy will directly reduce the use of fossil fuels	Time series for energy usage patterns; 'Theory of No Change' to measure barriers to success (Worlen, 2011); network analysis of market stakeholders
18: Glacial Lake Outburst Flood risk reduction in Northern Pakistan	Adaptation	Medium	Hard to discern the impact of this program as compared to the many programs already operating in this region; Many sub-interventions to be measured; Unpredictability of flood frequency and magnitude	Randomized evaluation for early warning alert systems, CBDRM training, agriculture systems; Ecosystem monitoring for reforestation efforts; Participatory community research/Most significant change
19: Financial and Land-Use Planning Instruments to Reduce Emissions from Deforestation	Mitigation	High	Large number of interventions; Many interventions work on a macroeconomic scale (policies and regulations); Interventions at various levels of analysis spanning a whole system	Spatial analysis for land use plans; Randomized evaluation of farmer training and sustainable production grants; Time series for taxation, financial tools, and product certification; Process evaluation for REDD+, project funds, forest traceability programs, and inter-institutional agreements
26: Sustainable Landscapes in Eastern Madagascar	Mitigation and Adaptation	High	Lack of clarity and specificity of theories of change; Many interventions which may interact; Potential for spillovers in project impacts	Randomized evaluation for sustainable agriculture program; Process evaluation for climate-smart planning modules; Time series for climate investment fund activities; Spatial analysis for forestry program
35: Climate Information Services for Resilient Development in Vanuatu	Adaptation	High	Inconsistent baselines (assumes absence of a baseline is zero); Unclear as to how systems will affect behavioural change; Many simultaneous interventions could be challenging to measure separately	'Participatory case studies' already planned in the program, if these were to be randomized the could serve as pilots for future scale-ups; Web analytics to measure IT- and ICT-based interventions; Integrating information from climate information systems (weather pattern data) into measurements of human welfare outcomes.
41: <u>Simivu</u> Climate Resilient Development Programme	Adaptation	Medium	Public infrastructure projects such as latrines and water treatment cannot be easily randomized	Randomized evaluation of agriculture programs; pre-post surveys or instrumental variables for infrastructure projects; Participatory community research for capacity building and training

Table 3. Rating of ten GCF projects based on complexity

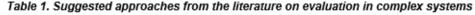
Examining complexity

- Learning-oriented realtime impact assessment programme (LORTA)
- Sustainable landscapes in Madagascar
- Collaboration between private and public sector (Conservation International and EIB)
- Forest corridors

MADAGASCAR-OBJECTIVES


- Increase resilience of vulnerable farmers (85700 farmers)
- Reduce GHG emissions from deforestation and forest degradation (680000 ha of forests; 5 MtCO2)
- Protect forests
- Improve access to energy with low emission electricity (448000 farmers)
- May 2018 May 2022 (public sector) and till 2027 for private sector.

GIS Data beforehand


		Year 0	Year 1	Ye			
Phase 1 (59 CO	BAs)						
HH data collection (survey data)	14 households per COBAs. COBAs phase 1: 59	Total: 826 hhs	No data collection	826 fii by Ap	Jata	collec [.]	tion
Training and distribution Patrolling		Starts in Year 0 after data collection AFTER year 0	Continues	Continues	Interv	ventio	ns
Monitoring (high frequency data) and GIS.		Starts in Year 0 and continues through the year AFTER data collection in Year 0	Continues	Continue	alitati colle	completed Ve da ction	nta
Phase 2 (59 CO	BAs)						
HH data collection	COBAs phase 2: 59 CAZ: COFAV:	No hh data collection	No hh data collection	No hh data collection	No hh data collection	No hh data collection	0
HH data collection (hh survey)		Collect data on 826 households		None	Collect data in 826 ACISOI		826 x 3 times = 2478 observations
Total obs. For household data collection	178	(Phase 1: 826 Phase 2: 0 Phase 3: 826			d des	_	8177

What we found (aligned with the literature)

- What does high complexity mean for evaluation?
 - We might not be able to capture important changes – simplistic theories of change.
 - **Different methods, more** methods?
 - Most suggested methods are qualitative – what does it mean for rigorous causal inference?
- There isn't much literature on complexity and evaluation; for climate change there is even less

Method	Description	Benefits	Suggested by
Emergent logic models	Convey multiple causal strands at different levels of analysis in a logic model and adapt the model as new outcomes emerge.	Addresses the challenge of overly simplistic single causal models by capturing emergent outcomes, which occur only during and after interventions as a product of interactions.	Rogers (2008)
Network Theory	Present agents in the system as nodes and the connections between them as networks. Analyze the behaviours and frequency of interactions between nodes.	Helps understand patterns in peer effects, cooperation, and the spread of information (Chandrasekhar, n.d.).	Preskill and Gopal (2014); Banerjee, Chandrasekhar, Duflo, Jackson (2013)
Most Significant Change	Collect and analyze stories on which interventions appear to stakeholders to have provoked the most significant change.	Engages stakeholders in the evaluation process and helps recognize unanticipated emergent properties.	USAID (2016); Preskill and Gopal (2014)
Time Series or Panel Data	Analyze data from multiple time periods (time series) and/or for multiple different outcomes (panel data) to measure change over time.	Facilitates the capture of trends that are not observable in a randomized setting due to temporal and feasibility constraints.	Preskill and Gopal (2014); Douthwaite, Mayne, McDougall, Paz- <u>Ybarnegaray</u> , (2017)
Outcome evidencing	Identify outcomes that appear most important to measuring change in a program, examine critical linkages and who is experiencing change, analyze findings, and repeat this process. (<u>Douthwaite</u> and Paz- <u>Ybarnegaray</u> , n.d.)	Allows for iterative and real-time learning; the evaluation can adapt as the complex system evolves.	Douthwaite, Mayne, McDougall, Paz- Ybarnegaray, (2017); USAID (2016)
Sentinel indicators	Identify outcomes which act as 'keystone <u>species'</u> to indicate the overall health or success of a system. Suggested approaches from the literature of	Prioritizes the evaluation's most important outcomes; creates a simple decision rule as to whether an intervention is successful.	USAID (2016)

Learning for design and implementation till now

- Outcomes are emergent properties of complex systems
- Adaptive experimentation.
- Results based payments?
- Let the experts implement and design.

Ideas for a path forward

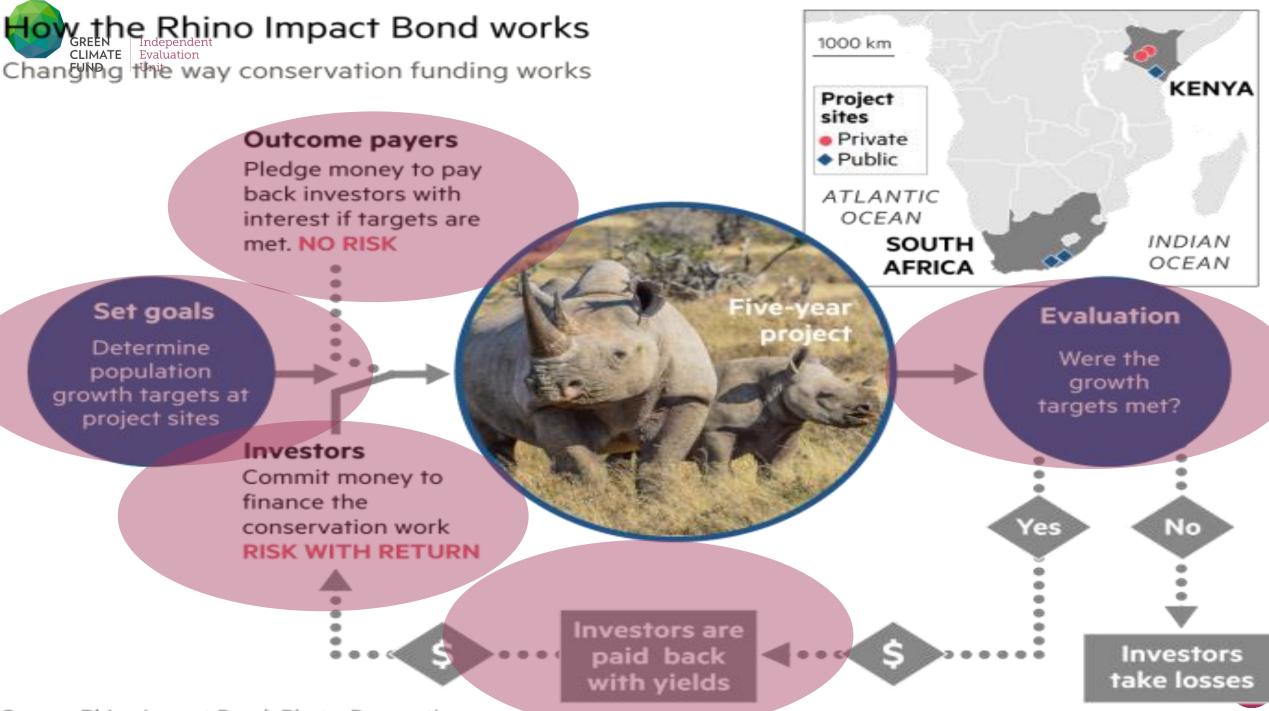
- **Useful** framework of analysis?
- How to better identify and measure complexity?
- New approaches for understanding complex projects
 - Real-time learning
 - Innovation with technology: GIS, CIS, wearables, mobile data, apps
 - Innovation with methods: Econometrics like synthetic control; machine learning for prodictive inference

Independent Evaluation Unit

Thank you!

Contact IEU:

- ➢ ieu@gcfund.org
- @GCF_Eval
- e ieu.greenclimate.fund



A Rhino bond

- Results based payments
- Let the experts implement and design.
- Adaptive experimentation.

- Outcomes are emergent properties of complex systems

