Breaking Down the Silos:

The Integration of Energy Efficiency, Renewable Energy, Demand Response, and Climate Change

Edward Vine

Lawrence Berkeley National Laboratory & California Institute for Energy and Environment

International Workshop on Evaluating Climate Change and Development

Bibliotheca Alexandrina

Alexandria, Egypt

May 10-13, 2008

1

Topics

- □ Changing evaluation landscape
 - Energy efficiency, demand response, renewable energy, climate change
- Paradigm shift
- □ New evaluation challenges
 - Evaluation issues
 - Evaluation approaches and methods
 - Evaluation protocols
- □ Breaking down the silos
- Conclusions

Changing Evaluation Landscape

- □ Historically:
 - Energy efficiency as a least cost strategy to help meet resource adequacy and transmission expansion needs, and to mitigate increasing energy costs
- □ Currently, there is a need to:
 - Integrate energy efficiency programs with other programs:
 - Renewable energy (to reduce dependency on fossil fuels)
 - Demand response (to reduce investments in generation)
 - Climate change (to reduce greenhouse gas emissions)

Energy Efficiency & Resource Adequacy in California

- Since its enactment in 2003, the Loading Order has been integrated into the major California Public Utilities Commission's decisions governing energy policy and procurement of new energy resources.
- □ In the Energy Action Plan, the Loading Order continued:
 - "Pursue all cost-effective energy efficiency, first."
- □ Energy resources are prioritized as follows:
 - 1. Energy efficiency/demand response
 - 2. Renewable generation, including renewable DG
 - 3. Increased development of affordable and reliable conventional generation
 - 4. Transmission expansion to support all of California's energy goals

4

California: The Most Aggressive Energy Efficiency Program in the Nation

□ Energy Efficiency goals (2004-2013)

- **2**6,506 GWh/year
- **5,000** MW/year
- □ 444 Million therms/year
- Eliminates need for 10 new power plants
- Eliminates 9 million tons of CO₂ emissions (equal to 1.8 million cars)
- □ \$10 billion in net savings to consumers

Current Program Cycle (2006-2008)

~\$2 billion in funding for 3 years
 \$581M in 2006, \$646M in 2007, and \$742 M in 2008
 Annual funding from utility procurement dollars and from the Public Goods Charge
 Levelized cost of 3 cents/kWh and 21 cents/therm

□\$2.7 billion in net savings to consumers over 3 years

Energy Efficiency & Transmission and Distribution Congestion

- Energy efficiency: cost-effective way to defer or eliminate the need for transmission and distribution expansion
- **Examples:**
 - Pacific Northwest
 - New York
 - Vermont
 - Connecticut
 - City of San Francisco

Increasing Attention to Demand Response

Demand response programs

- Designed to reduce short-term capacity needs and/or transmission constraints
- Changes in energy use in response to signals in the form of electricity prices, incentives, or alerts
- **California**:
 - 5% of system peak demand must be met by demand response programs
 - \$262 million budgeted for 2006-2008
 - Federal Energy Regulatory Commission CAISO's Market Redesign and Technology Upgrade proposal

Conditionally approved if CAISO incorporates priceresponsive demand response programs

Increasing Attention to Renewable Energy

Renewable portfolio standards - 21 states

- California
 - Goal: 20% of state needs met by renewable energy by 2010
 & 33% by 2020
- California Solar Initiative
 - Lower the cost of solar systems for consumers and build a selfsustaining solar market
 - \$2 billion in incentives over 2007-2016 (all sectors, except new residential)
 - \$350 million in incentives: New Solar Homes Partnership
 - Builders must exceed the performance of current state's energy efficiency standards (Title 24) by 15%

Increasing Attention to Climate Change

- Interest and awareness of potential climate change impacts are at an all-time high in the U.S.
 - Intergovernmental Panel on Climate Change (IPCC) reports, Al Gore's An Inconvenient Truth, Nobel Price for IPCC and Gore
- □ Regional and state government response
 - Regional cap and trade systems
 - Regional Greenhouse Gas Initiative (RGGI) in the Northeast
 - California goals established (AB 32)
 - Reduce GHG emissions to 2000 levels by 2010, to 1990 levels
 by 2020 and to 80% below 1990 levels by 2050

Paradigm Shift

- Energy efficiency is an important strategy for addressing climate change
 - National Commission on Energy Policy
 - Pew Center on Global Climate Change
 - Pacala and Socolow's *Science* article (4/15 wedges)
 - Paradigm shift from "energy paradigm" to "climate change paradigm"

New Evaluation Challenges

- 1. How can the evaluation of energy efficiency programs provide guidance on the design and evaluation of renewable energy, demand response & climate change mitigation programs?
- 2. What energy efficiency program evaluation approaches are useful for evaluating the above programs?
- 3. How are energy efficiency evaluation protocols being expanded to include the above topics?
- 4. What policy mechanisms are needed for integrating energy efficiency programs with these other types of programs?

Common Evaluation Issues (1)

- □ Baselines and additionality
 - What would have happened if the program had not been implemented?
 - Unit of analysis: energy use, energy production, loads, GHG emissions
 - Baselines: standards, existing efficiencies, replacement practices, comparison groups
 - Need to be consistently defined
 - Clean Development Mechanism (CDM) Rules for additionality

Common Evaluation Issues (2)

- □ Free riders and spillover
 - Free riders: program participants who would have installed the same measures if there had been no project
 - Spillover:
 - Participant spillover: program participants who installed additional measures that were not incented by the program
 - Non-participant spillover: end users who were influenced by the program to install measures but did not participate in the program
 - Gross savings versus net savings (accounting for free riders and spillover) => need for consistency
 - Less an issue now for demand response and renewable energy, but may become more relevant with widespread use of demand response and renewable energy
 - Important for climate change

□ Market transformation perspective (free drivers)

Common Evaluation Issues (3)

□ Reliability, uncertainty, and precision [1]

- Uncertainties in estimating energy savings and reducing emissions
 - Supply-side uncertainties: just as great
 - Risk-reducing value of energy efficiency
- Need to identify level of precision and confidence levels associated with measurement of savings or production
 - Quantitatively (standard deviation, confidence intervals, sensitivity or probability assessments)
 - Qualitatively (low, medium, high)
 - Protocols/guidelines:
 - California M&E protocols: sampling and rigor levels
 - New England ISO M&V manual: precision is important

Common Evaluation Issues (4)

□ Reliability, uncertainty, and precision [2]

- Demand response: similar to energy efficiency
- Renewable energy: similar but with less concern about precision
- Climate change mitigation: similar to energy efficiency, but precision will vary by how emissions are calculated:
 - Default emissions factor
 - Utility dispatch model
 - Something in between
- Possible responses:
 - Discounting
 - I Minimum uncertainty and reliability standards

Common Evaluation Issues (5)

Persistence

- Is the installed measure still there and operating as designed?
- High persistence for energy efficiency measures
- Not important for demand response (short-lived measures)
- More important for renewable energy projects (PVs)
- Reflected in duration (lifetime) of GHG emission credits

Evaluation Approaches and Methods (1)

□ Impact evaluation

- Gross and net energy savings; peak demand savings
- Protocols: California, US EPA, National Action Plan for Energy Efficiency (NAPEE), International Energy Agency
- Methods: stipulated savings, billing analysis, or building simulations
- Demand response
 - Time period of analysis is shorter (hourly) and specific impacts vary by temperature, weather, day of week, time of day, location, type of system emergency, etc.
- Renewable energy
 - Energy production; methods are the same as for energy efficiency; more emphasis on capacity (kW) savings
- Climate change
 - □ Similar to energy efficiency; emissions calculated:
 - Default emissions factor
 - Utility dispatch model
 - Something in between

Evaluation Approaches and Methods (2)

Market effects evaluation[1]

- Energy and demand savings associated with changes in the market that are induced by sets of program interventions
- CA M&E protocols: Market Effects Protocol
- Logic models and market theory are useful for:
 - Guiding the market effects evaluation (also used in process and impact evaluations)
 - Developing a list of indicators
 - Identifying market infrastructure development needs that can contribute to program success
 - Identifying barriers limiting program success
 - Identifying program design and implementation strategies that are market focused

Evaluation Approaches and Methods (3)

□ Market effects evaluation [2]

- Market indicators
 - □ Awareness
 - Intention to purchase
 - Stocking practices
 - Product availability
 - D Prices
 - Willingness to invest
 - 🛛 Sales
 - Value of carbon credits

Evaluation Approaches and Methods (4)

Process evaluation

- Identify improvements or modifications to a group of programs, individual programs, or program components
 - Helpful for identifying training needs and understanding behaviors, barriers, participants, and non-participants
- Focus: efficiency and effectiveness
- Logic models and program theory are useful
 - Examination of social and behavioral issues
- CA M&E protocols: Process Evaluation Protocol

Evaluation Protocols

- For measuring, verifying, and reporting energy efficiency and demand savings, renewable energy generation, and GHG emissions reductions
- International: US DOE/Efficiency Valuation Organization -International Performance Measurement Verification Protocol
 - Energy efficiency building focus
 - Renewable energy project focus
- □ National:
 - NAPEE: Model EM&V Guidelines program focus & climate change
- Regionally: New England ISO
 - Energy efficiency and demand response program focus
- **State:** California PUC
 - Energy efficiency program focus
 - Demand response program focus under development

Breaking Down the Silos (1)

- Evaluation issues, methods, rules are being addressed in multiple policy arenas or regulatory proceedings ("silos")
- Regulatory policies are needed for integrating energy efficiency programs with demand response, renewable energy, and climate change mitigation, but difficult:
 - Inertia, due to many challenges & barriers; many stakeholder groups ("political parties"):
 - Differing interest levels
 - Power, budget, and control issues
 - Cultural differences (example: air quality and energy efficiency)

Breaking Down the Silos (2)

- □ Climate change as the driving force
 - Converting savings from energy efficiency, demand response, and renewable energy programs to GHG emissions reductions
 - I Methods
 - Value of GHG emissions reductions in cost-effectiveness tests
 - □ Who owns the credits from reducing GHG emissions?

Breaking Down the Silos (3)

□ Collaboration and coordination between different policy arenas

- Energy efficiency and renewable energy
 - □ <u>Program and building level</u>: Zero energy new homes (ZENH)
 - <u>Policy level</u>: (1) builders of solar homes must exceed the current California's energy efficiency standards by 15% (New Solar Homes Partnership); (2) energy efficiency resource standards and renewable energy portfolio standards; (3) allocation of public benefits funds for energy efficiency and renewable energy
 - <u>Corporate level</u>: all existing customers must have an energy efficiency audit if applying for a solar incentive
 - <u>Market level</u>: development of markets for tradable energy saving certificates (ESCs) and renewable energy certificates (RECs)

Breaking Down the Silos (4)

Collaboration and coordination between different policy arenas

- Evaluation frameworks (e.g., NYSERDA)
 - □ Energy efficiency, demand response, and renewable energy
 - □ Impacts, efficiency and effectiveness of program implementation
 - Economic impact and cost-effectiveness of programs
 - Progress in transforming markets
 - Progress towards policy goals
- Customer services (e.g., PG&E)
 - Package services in the following order: energy efficiency, demand response and renewable energy
 - Carbon offset program ("Climate Smart")
- Local government & sustainable cities (e.g., Chula Vista)
- Regional planning organizations & integrated resource planning to reduce carbon dioxide footprint of power systems (e.g., Northwest Power and Conservation Council)

Conclusions

□ Breaking down the silos - reasons for hope:

- Energy efficiency EM&V protocols are being expanded to address demand response, renewable energy, and climate change mitigation programs
- Policy mechanisms are being developed for integrating the different programs
- Utilities, local government, regional government are addressing this issue
- The private market may force the issue
- Key challenge: who will make the final decisions on key policies and technical issues at the state, regional, federal, and international levels, and how will these policies and agreements be coordinated?
- D Policy regulatory environment challenges:
 - Comprehensive methodology for evaluating all of the programs
 - Unified set of policy rules
 - Allocation of benefits and costs across activity areas

Final Comment

A more coherent and cohesive strategy for fostering the integration of these policy arenas is needed for responding to the threat of climate change and for creating a more sustainable society.

Time for Questions

